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Duality in hadron-hadron scattering
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Duality in electron-hadron scattering

“Bloom-Gilman duality”
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Duality in electron-hadron scattering
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Duality in electron-hadron scattering

—> also exists [ocally in individual resonance regions




Duality in QCD era

B Operator product expansion

—> expand moments of structure functions
in powers of l/Q2
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Duality in QCD era

B Operator product expansion

—> expand moments of structure functions
in powers of 1/Q2
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de Rujula, Georgi, Politzer
/ Ann. Phys. 103, 315 (1975)

matrix elements of operators with
specific “twist” T

T = dimension — spin

T =2 T > 2




Duality in QCD era

B Operator product expansion

—> expand moments of structure functions
in powers of 1/Q2

1

M, (Q?) :/ de "% Fy(z,Q?)
0

AD 40

de Rujula, Georgi, Politzer
Ann. Phys. 103, 315 (1975)

B If moment =~ independent of Q2

—> higher twist terms A{>? small

B Duality «— suppression of higher twists




Modern perspective:
truncated moments




Truncated moments

B Seldom have sufficient data to form complete moments

—> usually require x — 0 and = — 1 extrapolations
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Truncated moments

B Seldom have sufficient data to form complete moments

—> usually require x — 0 and = — 1 extrapolations

B Truncated moments allow study of restricted regions in x
(or W) within pQCD in well-defined, systematic way

M, (Az, Q%) — / dz 2" Fy(z, Q?)

Ax
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Truncated moments

B Seldom have sufficient data to form complete moments

—> usually require x — 0 and = — 1 extrapolations

B Truncated moments allow study of restricted regions in x
(or W) within pQCD in well-defined, systematic way

M, (Az, Q%) — / dz 2" Fy(z, Q?)

Ax

B Obey DGLAP-like evolution equations, similar to PDFs

dM,,(Ax, Q?) s (o, _
dlogQ?  2n (;m) © 3, ) (A2, Q?)

[P(’n)(z,ozs) = 2" Pns.s(z,as

truncated splitting function

Forte, Magnea, PLB 448, 295 (1999)
) Kotlorz, Kotlorz, PLB 644, 284 (2007)
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Truncated moments

Follow evolution of specific resonance (region) with Q*
in pQCD framework
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how much of this region is leading twist ?
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B Analysis of JLab F) resonance region data
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PRC 78, 025206 (2008)
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Analysis of |Lab F} resonance region data
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—> | higher twists < 10-15% for Q* > 1 GeV”
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Resonances & twists

B Total higher twist “small” at scales Q* ~ O(1 GeV?)

B On average, nonperturbative interactions between
quarks and gluons not dominant (at these scales)

—> nontrivial interference between resonances
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Resonances & twists

Total higher twist “small” at scales Q* ~ O(1 GeV?)

On average, nonperturbative interactions between
quarks and gluons not dominant (at these scales)

—> nontrivial interference between resonances

Can we understand this dynamically, at quark level?
—> is duality an accident?

Can we use resonance region data to learn about
leading twist structure functions?

—> expanded data set has potentially significant
implications for global PDF studies
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Insights trom
dynamical models




B Consider simple quark model with spin-flavor symmetric
wave function

form factors 2
—> coherent scattering from quarks do ~ (Z e,,;>

structure functions

— incoherent scattering from quarks do ~ Z e;

1
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B Consider simple quark model with spin-flavor symmetric
wave function

form factors 2

—> coherent scattering from quarks do ~ ) e;

1

structure functions

— incoherent scattering from quarks do ~ Z e;
()

B For duality to work, these must be equal

—> how can square of a sum become sum of squares”!
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B Accidental cancellations of charges?

cat’s ears diagram (4-fermion higher twist ~ 1/Q?)

ocZez-ej ~ (Z 6¢)2—Z 67,2
7 1 1

coherent incoherent
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B Accidental cancellations of charges?

cat’s ears diagram (4-fermion higher twist ~ 1/Q?)
2

R X Z €; €5 (Z 67;) — Z 6?
. it i T ; T

coherent incoherent

4 1
proton HT ~ 1 — (2><—+—):()!

9 9
4 1 Brodsky
neutron HT ~ 0 — (5 + 2 X §) 7& 0 hep-ph/0006310

—> duality in proton a coincidence!

—> should not hold for neutron

18



B Dynamical cancellations?

—> ¢.g. for toy model of two quarks bound in a harmonic
oscillator potential, structure function given by

2
F(r,q*) ~ Y |Gon(a®)|” 6(E, — Eo —v)
—> charge operator Y, e; exp(iq-r;) excites
even partial waves with strength o (e + e2)”
odd partial waves with strength o (e; — e3)”
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B Dynamical cancellations?

—> ¢.g. for toy model of two quarks bound in a harmonic
oscillator potential, structure function given by

F(v,q%) ~ Z‘Gg,n(qQ)‘Q S(E, — Ey — V)

n

—> charge operator Y, e; exp(iq-r;) excites
even partial waves with strength o (e + e2)”
odd partial waves with strength o (e; — e3)”

— resulting structure function
Z{ e1 4 €2)” Gg o, + (61— €2)° GG 2pi1 }

—> if states degenerate, cross terms (~ eije2) cancel when
averaged over nearby even and odd parity states
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B Dynamical cancellations?

—> duality is realized by summing over at least one
complete set of even and odd parity resonances *

Close, Isgur, PLB 509, 81 (2001)

—> in NR Quark Model, even & odd parity states generalize
to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)

B assume magnetic coupling of photon to quarks
(better approximation at high Q%)

m in this limit Callan-Gross relation valid F, = 2z F}

m structure function given by squared sum of transition FFs

Fl(v,52)~; |Fy. »R(52)|25(ER_EN_ V)

* realized in many models: ‘t Hooft model, large N.,RQM, ... see WM et al., Phys. Rep. 406, 127 (2005)
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B Dynamical cancellations?

—> duality is realized by summing over at least one
complete set of even and odd parity resonances

Close, Isgur, PLB 509, 81 (2001)

—> in NR Quark Model, even & odd parity states generalize
to 56 (L=0) and 70 (L=1) multiplets of spin-flavor SU(6)

representation ~ 8[56™] *10[56" ] 28[70 ] “8[70°] *10[70 ] Total
F? 9p? S\° 9p? 0 A2 18p%+9\?
F" (3p+N)*/4 8\° (3p—N\)%/4 40\? A2 (9p>+27\%)/2

A (p) = (anti) symmetric component of ground state wfn.

Close, WM, PRC 68, 035210 (2003)
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B SU(®6) limit ==p \ = p

—> relative strengths of N — N* transitions:

SU(6): [56,07]28 [56,01]410 [70,17]28 [70,17]*8 [70,17]210 total

FP 9 8 9 0 1 27
Fr 1 8 1 4 1 18

B summing over all resonances in 56 and 70~ multiplets

il — 2 as in quark-parton model (for u=2d) !

—)_
FP 3

B proton sum saturated by lower-lying resonances

—> expect duality to appear earlier for p than n

Close, WM, PRC 68, 035210 (2003)
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Comparison with data

B Proton data expected to overestimate DIS function in
2nd and 3rd resonance regions (odd parity states)
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Malace et al., PRC 80, 035207 (2009)

—> duality violation for proton <10%, integrated over x
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Comparison with data

B Duality in neutron not tested because of absence of

free neutron targets

B New extraction method (using iterative procedure for solving
integral convolution equations) has allowed first determination
of F}' in resonance region & test of neutron duality
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2

M (data) / MZ (theory)

Comparison with data

B Neutron data expected to lie below DIS function in 2nd region
S .+ Alekhin "+ |  — “theory”: fitto W> 2 GeV data
:_ ........ LA S $..g T _ Alekhin et al., 0908.2762 [hep-ph]
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PRL 104, 102001 (2010)

=P duality is not accidental, but a general feature
of resonance-scaling transition!
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2

M (data) / MZ (theory)

Comparison with data

B Neutron data expected to lie below DIS function in 2nd region
S .+ Alekhin "+ |  — “theory”: fitto W> 2 GeV data
:_ ........ LA S $..g T _ Alekhin et al., 0908.2762 [hep-ph]

PR B S -

o v+ | T locally,violations of duality in
b ot resonance regions < 15-20%
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S T T T S S S globally, violations < 10%
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o - ; I E— ; T 7 Malace, Kahn, WM, Keppel

PRL 104, 102001 (2010)

== Use resonance region data to learn about
leading twist structure functions?
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Duality 1n practice:
global PDF analysis




CTEQé6X global PDF analysis

B New global QCD (next-to-leading order) analysis of expanded
set of p and d data, including large-x, low-Q? region

—> joint JLab-CTEQ theory/experiment collaboration
(with Hampton, FSU, FNAL, Duke)

m Systematically study effects of Q> & W cuts

— aslowas Q~m_.and W~ 1.7 GeV

B Include large-x corrections
—> TMCs & higher twists Fu(z,Q%) = Fy' (2, Q%) (1 + C(z)/Q?)

—> realistic nuclear effects in deuteron (binding + off-shell)
(most analyses assume no nuclear corrections)
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CTEQ6X - kinematic
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CTEQ6X - kinematic cuts

B Systematically reduce Q% and W cuts, including TMC, HT
& nuclear corrections

2

1.5

d/d

Q*=10 GeV?

ref

“reference” fit with cutO,
no nuclear/HT corrections

.
- ’

[—

—> stable with respect
to cut reduction

—> d quark suppressed

by ~ 50% for x > 0.5

(driven by nuclear
corrections)

Accardi et al., Phys. Rev. D 81, 034016 (2010)
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1.5

0.5

CTEQ6X - l/Q2 corrections
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—> important interplay between TMCs and higher twist:
HT alone cannot accommodate full 9> dependence

—> stable leading twist when both TMCs and HTs included




1.5

0.5

CTEQ6X - final PDF results
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—> full fits favors

smaller d/u ratio

(CTEQ6.1 had no nuclear
or TMC/HT corrections)
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CTEQ6X - final PDF results
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—> full fits favors

smaller d/u ratio

(CTEQ6.1 had no nuclear
or TMC/HT corrections)

—> up to 40-60%

reduced errors
with weaker cuts
extending into
resonance region




Summary

B Remarkable confirmation of quark-hadron duality
in proton and neutron structure functions

—> duality violating higher twists ~ 10-15% in few-GeV range

B Confirmation of duality in neutron suggests origin in
dynamical cancellations of higher twists

—> duality not due to accidental cancellations of quark charges

B Practical application of duality
—> use resonance region data to constrain leading twist PDFs

— stable fits at low Q% and large x with significantly reduced
uncertainties
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